Impact of Order Latency
This example illustrates the impact of order latency on the performance of the strategy.
Note: This example is for educational purposes only and demonstrates effective strategies for high-frequency market-making schemes. All backtests are based on a 0.005% rebate, the highest market maker rebate available on Binance Futures. See Binance Upgrades USDⓢ-Margined Futures Liquidity Provider Program for more details.
[1]:
import numpy as np
from numba import njit, uint64
from numba.typed import Dict
from hftbacktest import (
BacktestAsset,
ROIVectorMarketDepthBacktest,
GTX,
LIMIT,
BUY,
SELL,
BUY_EVENT,
Recorder
)
from hftbacktest.stats import LinearAssetRecord
@njit
def measure_trading_intensity(order_arrival_depth, out):
max_tick = 0
for depth in order_arrival_depth:
if not np.isfinite(depth):
continue
# Sets the tick index to 0 for the nearest possible best price
# as the order arrival depth in ticks is measured from the mid-price
tick = round(depth / .5) - 1
# In a fast-moving market, buy trades can occur below the mid-price (and vice versa for sell trades)
# since the mid-price is measured in a previous time-step;
# however, to simplify the problem, we will exclude those cases.
if tick < 0 or tick >= len(out):
continue
# All of our possible quotes within the order arrival depth,
# excluding those at the same price, are considered executed.
out[:tick] += 1
max_tick = max(max_tick, tick)
return out[:max_tick]
@njit
def linear_regression(x, y):
sx = np.sum(x)
sy = np.sum(y)
sx2 = np.sum(x ** 2)
sxy = np.sum(x * y)
w = len(x)
slope = (w * sxy - sx * sy) / (w * sx2 - sx**2)
intercept = (sy - slope * sx) / w
return slope, intercept
@njit
def compute_coeff(xi, gamma, delta, A, k):
inv_k = np.divide(1, k)
c1 = 1 / (xi * delta) * np.log(1 + xi * delta * inv_k)
c2 = np.sqrt(np.divide(gamma, 2 * A * delta * k) * ((1 + xi * delta * inv_k) ** (k / (xi * delta) + 1)))
return c1, c2
@njit
def gridtrading_glft_mm(hbt, order_qty, recorder):
asset_no = 0
tick_size = hbt.depth(asset_no).tick_size
arrival_depth = np.full(10_000_000, np.nan, np.float64)
mid_price_chg = np.full(10_000_000, np.nan, np.float64)
t = 0
prev_mid_price_tick = np.nan
mid_price_tick = np.nan
tmp = np.zeros(500, np.float64)
ticks = np.arange(len(tmp)) + 0.5
A = np.nan
k = np.nan
volatility = np.nan
gamma = 0.05
delta = 1
adj1 = 1
# adj2 is determined according to the order quantity.
grid_num = 20
max_position = grid_num * order_qty
adj2 = 1 / max_position
# Checks every 100 milliseconds.
while hbt.elapse(100_000_000) == 0:
#--------------------------------------------------------
# Records market order's arrival depth from the mid-price.
if not np.isnan(mid_price_tick):
depth = -np.inf
for last_trade in hbt.last_trades(asset_no):
trade_price_tick = last_trade.px / tick_size
if last_trade.ev & BUY_EVENT == BUY_EVENT:
depth = max(trade_price_tick - mid_price_tick, depth)
else:
depth = max(mid_price_tick - trade_price_tick, depth)
arrival_depth[t] = depth
hbt.clear_last_trades(asset_no)
hbt.clear_inactive_orders(asset_no)
depth = hbt.depth(asset_no)
position = hbt.position(asset_no)
orders = hbt.orders(asset_no)
best_bid_tick = depth.best_bid_tick
best_ask_tick = depth.best_ask_tick
prev_mid_price_tick = mid_price_tick
mid_price_tick = (best_bid_tick + best_ask_tick) / 2.0
# Records the mid-price change for volatility calculation.
mid_price_chg[t] = mid_price_tick - prev_mid_price_tick
#--------------------------------------------------------
# Calibrates A, k and calculates the market volatility.
# Updates A, k, and the volatility every 5-sec.
if t % 50 == 0:
# Window size is 10-minute.
if t >= 6_000 - 1:
# Calibrates A, k
tmp[:] = 0
lambda_ = measure_trading_intensity(arrival_depth[t + 1 - 6_000:t + 1], tmp)
if len(lambda_) > 2:
lambda_ = lambda_[:70] / 600
x = ticks[:len(lambda_)]
y = np.log(lambda_)
k_, logA = linear_regression(x, y)
A = np.exp(logA)
k = -k_
# Updates the volatility.
volatility = np.nanstd(mid_price_chg[t + 1 - 6_000:t + 1]) * np.sqrt(10)
#--------------------------------------------------------
# Computes bid price and ask price.
c1, c2 = compute_coeff(gamma, gamma, delta, A, k)
half_spread_tick = (c1 + delta / 2 * c2 * volatility) * adj1
skew = c2 * volatility * adj2
reservation_price_tick = mid_price_tick - skew * position
bid_price_tick = min(np.round(reservation_price_tick - half_spread_tick), best_bid_tick)
ask_price_tick = max(np.round(reservation_price_tick + half_spread_tick), best_ask_tick)
bid_price = bid_price_tick * tick_size
ask_price = ask_price_tick * tick_size
grid_interval = max(np.round(half_spread_tick) * tick_size, tick_size)
bid_price = np.floor(bid_price / grid_interval) * grid_interval
ask_price = np.ceil(ask_price / grid_interval) * grid_interval
#--------------------------------------------------------
# Updates quotes.
# Creates a new grid for buy orders.
new_bid_orders = Dict.empty(np.uint64, np.float64)
if position < max_position and np.isfinite(bid_price):
for i in range(grid_num):
bid_price_tick = round(bid_price / tick_size)
# order price in tick is used as order id.
new_bid_orders[uint64(bid_price_tick)] = bid_price
bid_price -= grid_interval
# Creates a new grid for sell orders.
new_ask_orders = Dict.empty(np.uint64, np.float64)
if position > -max_position and np.isfinite(ask_price):
for i in range(grid_num):
ask_price_tick = round(ask_price / tick_size)
# order price in tick is used as order id.
new_ask_orders[uint64(ask_price_tick)] = ask_price
ask_price += grid_interval
order_values = orders.values();
while order_values.has_next():
order = order_values.get()
# Cancels if a working order is not in the new grid.
if order.cancellable:
if (
(order.side == BUY and order.order_id not in new_bid_orders)
or (order.side == SELL and order.order_id not in new_ask_orders)
):
hbt.cancel(asset_no, order.order_id, False)
for order_id, order_price in new_bid_orders.items():
# Posts a new buy order if there is no working order at the price on the new grid.
if order_id not in orders:
hbt.submit_buy_order(asset_no, order_id, order_price, order_qty, GTX, LIMIT, False)
for order_id, order_price in new_ask_orders.items():
# Posts a new sell order if there is no working order at the price on the new grid.
if order_id not in orders:
hbt.submit_sell_order(asset_no, order_id, order_price, order_qty, GTX, LIMIT, False)
#--------------------------------------------------------
# Records variables and stats for analysis.
t += 1
if t >= len(arrival_depth) or t >= len(mid_price_chg):
raise Exception
# Records the current state for stat calculation.
recorder.record(hbt)
Order Latency from Feed Latency
Please see the tutorial on generating artificial order latency data from feed latency.
[2]:
asset = (
BacktestAsset()
.data([
'data/ethusdt_20230401.npz',
'data/ethusdt_20230402.npz',
'data/ethusdt_20230403.npz',
'data/ethusdt_20230404.npz',
'data/ethusdt_20230405.npz'
])
.initial_snapshot('data/ethusdt_20230331_eod.npz')
.linear_asset(1.0)
.intp_order_latency([
'latency/feed_latency_20230401.npz',
'latency/feed_latency_20230402.npz',
'latency/feed_latency_20230403.npz',
'latency/feed_latency_20230404.npz',
'latency/feed_latency_20230405.npz'
])
.power_prob_queue_model(2.0)
.no_partial_fill_exchange()
.trading_value_fee_model(-0.00005, 0.0007)
.tick_size(0.01)
.lot_size(0.001)
.roi_lb(0.0)
.roi_ub(3000.0)
.last_trades_capacity(10000)
)
hbt = ROIVectorMarketDepthBacktest([asset])
recorder = Recorder(1, 5_000_000)
gridtrading_glft_mm(hbt, 1, recorder.recorder)
hbt.close()
stats = LinearAssetRecord(recorder.get(0)).stats(book_size=25_000)
stats.summary()
[2]:
shape: (1, 11)
start | end | SR | Sortino | Return | MaxDrawdown | DailyNumberOfTrades | DailyTurnover | ReturnOverMDD | ReturnOverTrade | MaxPositionValue |
---|---|---|---|---|---|---|---|---|---|---|
datetime[μs] | datetime[μs] | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 |
2023-04-01 00:00:00 | 2023-04-05 23:59:50 | -0.197608 | -0.224204 | -0.001021 | 0.060794 | 4459.903239 | 328.415763 | -0.016794 | -6.2176e-7 | 75431.07 |
[3]:
stats.plot()

Live Order Latency
[4]:
latency_data = np.concatenate(
[np.load('latency/live_order_latency_{}.npz'.format(date))['data'] for date in range(20230401, 20230406)]
)
asset = (
BacktestAsset()
.data([
'data/ethusdt_20230401.npz',
'data/ethusdt_20230402.npz',
'data/ethusdt_20230403.npz',
'data/ethusdt_20230404.npz',
'data/ethusdt_20230405.npz'
])
.initial_snapshot('data/ethusdt_20230331_eod.npz')
.linear_asset(1.0)
.intp_order_latency(latency_data)
.power_prob_queue_model(2.0)
.no_partial_fill_exchange()
.trading_value_fee_model(-0.00005, 0.0007)
.tick_size(0.01)
.lot_size(0.001)
.roi_lb(0.0)
.roi_ub(3000.0)
.last_trades_capacity(10000)
)
hbt = ROIVectorMarketDepthBacktest([asset])
recorder = Recorder(1, 5_000_000)
gridtrading_glft_mm(hbt, 1, recorder.recorder)
hbt.close()
stats = LinearAssetRecord(recorder.get(0)).stats(book_size=25_000)
stats.summary()
[4]:
shape: (1, 11)
start | end | SR | Sortino | Return | MaxDrawdown | DailyNumberOfTrades | DailyTurnover | ReturnOverMDD | ReturnOverTrade | MaxPositionValue |
---|---|---|---|---|---|---|---|---|---|---|
datetime[μs] | datetime[μs] | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 |
2023-04-01 00:00:00 | 2023-04-05 23:59:50 | 1.536293 | 1.741565 | 0.007814 | 0.051916 | 4563.105627 | 336.150295 | 0.150518 | 0.000005 | 67694.55 |
[5]:
stats.plot()

Order Latency from Amplified Feed Latency
Order entry latency is 4 times the feed latency and order response latency is 3 times the feed latency.
[6]:
asset = (
BacktestAsset()
.data([
'data/ethusdt_20230401.npz',
'data/ethusdt_20230402.npz',
'data/ethusdt_20230403.npz',
'data/ethusdt_20230404.npz',
'data/ethusdt_20230405.npz'
])
.initial_snapshot('data/ethusdt_20221002_eod.npz')
.linear_asset(1.0)
.intp_order_latency([
'latency/amp_feed_latency_20230401.npz',
'latency/amp_feed_latency_20230402.npz',
'latency/amp_feed_latency_20230403.npz',
'latency/amp_feed_latency_20230404.npz',
'latency/amp_feed_latency_20230405.npz'
])
.power_prob_queue_model(2.0)
.no_partial_fill_exchange()
.trading_value_fee_model(-0.00005, 0.0007)
.tick_size(0.01)
.lot_size(0.001)
.roi_lb(0.0)
.roi_ub(3000.0)
.last_trades_capacity(10000)
)
hbt = ROIVectorMarketDepthBacktest([asset])
recorder = Recorder(1, 5_000_000)
gridtrading_glft_mm(hbt, 1, recorder.recorder)
hbt.close()
stats = LinearAssetRecord(recorder.get(0)).stats(book_size=25_000)
stats.summary()
[6]:
shape: (1, 11)
start | end | SR | Sortino | Return | MaxDrawdown | DailyNumberOfTrades | DailyTurnover | ReturnOverMDD | ReturnOverTrade | MaxPositionValue |
---|---|---|---|---|---|---|---|---|---|---|
datetime[μs] | datetime[μs] | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 | f64 |
2023-04-01 00:00:00 | 2023-04-05 23:59:50 | -0.376802 | -0.430111 | -0.002163 | 0.053785 | 4366.301072 | 321.501683 | -0.040224 | -0.000001 | 75711.93 |
[7]:
stats.plot()
